Prepares matrices list for further analysis (eg. Aggregation or GetQuantif). Orientation can be corrected, and per matrix transformation can be performed.
Usage
PrepareMtxList(
matrices,
minDist = NULL,
maxDist = NULL,
rm0 = FALSE,
transFun = NULL,
orientate = FALSE
)
Arguments
- matrices
<listmatrix>: The matrices list to prepare.
- minDist
: The minimal distance between anchor and bait. - maxDist
: The maximal distance between anchor and bait. - rm0
: Whether 0 should be replaced with NA. (Default FALSE) - transFun
: The function used to transform or scale values in each submatrix before aggregation. The following characters can be submitted: "quantile" or "qtl" apply function dplyr::ntile(x,500)
"percentile" or "prct" apply percentile.
"rank" apply a ranking.
"zscore" apply a scaling.
"minmax" scales on a min to max range.
"mu" scales on mean:
(x-mean(x))/(max(x)-min(x))
.other or NULL don't apply transformation (Default).
- orientate
: Whether matrices must be corrected for orientatation before the aggregation.
Examples
# Data
data(Beaf32_Peaks.gnr)
data(HiC_Ctrl.cmx_lst)
data(HiC_HS.cmx_lst)
# Index Beaf32
Beaf32_Index.gnr <- IndexFeatures(
gRangeList = list(Beaf = Beaf32_Peaks.gnr),
chromSizes = data.frame(seqnames = c("2L", "2R"),
seqlengths = c(23513712, 25286936)),
binSize = 100000
)
# Beaf32 <-> Beaf32 Pairing
Beaf_Beaf.gni <- SearchPairs(indexAnchor = Beaf32_Index.gnr)
Beaf_Beaf.gni <- Beaf_Beaf.gni[seq_len(2000)] # subset 2000 first for exemple
# Matrices extractions center on Beaf32 <-> Beaf32 point interaction
interactions_Ctrl.mtx_lst <- ExtractSubmatrix(
genomicFeature = Beaf_Beaf.gni,
hicLst = HiC_Ctrl.cmx_lst,
referencePoint = "pf"
)
interactions_HS.mtx_lst <- ExtractSubmatrix(
genomicFeature = Beaf_Beaf.gni,
hicLst = HiC_HS.cmx_lst,
referencePoint = "pf"
)
interactions_Ctrl.mtx_lst <- PrepareMtxList(
matrices = interactions_Ctrl.mtx_lst
)
# Aggregate matrices in one matrix
aggreg.mtx <- Aggregation(interactions_Ctrl.mtx_lst)
interactions_HS.mtx_lst <- PrepareMtxList(
matrices = interactions_HS.mtx_lst
)
# Differential Aggregation
aggregDiff.mtx <- Aggregation(
ctrlMatrices = interactions_Ctrl.mtx_lst,
matrices = interactions_HS.mtx_lst
)